• 香港最快开奖现场直播结果,六和神算,181949.com,15488笑傲江湖高手论坛
  • 宇宙大爆炸的起源

    发布日期:2019-12-01 03:46   来源:未知   阅读:

      俺在世界历史上知道有个《地心说》,因为当时人们只知道地球,认为一切天体都

      后来出来个《日心说》因为发现了个太阳!听说提出的那小子还被烧死了...冤啊...

      大喊:俺有足够的证据证明俺的某某论成立,今年诺贝尔归俺了

      就说这个大爆炸,说的是宇宙起源!认为宇宙是由一点炸出来的,

      你要问在爆点以前是什么?回答是:那时候时间是0,连时间都没有那来的以前!!!

      现在的大爆炸论所依靠的证据只是证明了我们所在的这一小嘎瘩宇宙是炸出来的!

      (靠~~~别向某位著名的天文学家那样说俺没资格评论,俺就评了咋的?烧死我吗?)

      科学家真是个一群猴子,是帝国主义最高形式,看事情看表面现象,不看本质.一部机械理论的《生理学》竟哄得60亿人个个相信,人人必读.为什么它是机械理论?因为它是以解剖死人为主,把生命存在的要素--协同作用抹去,(活人才有协同作用,死人没有).只有协同作用才能解开中医之迷,经络之迷,针灸之迷,气功之迷,癌症之迷.

      展开全部1932年勒梅特首次提出了现代宇宙大爆炸理论:整个宇宙最初聚集在一个“原始原子”中,后来发生了大爆炸,碎片向四面八方散开,形成了我们的宇宙。从此之后,大爆炸理论成为众多科学家争论的焦点。在近日葡萄牙举行的宇宙论大会上,两派持不同意见的科学家再次对这个宇宙的起源学说展开了争论。

      大约在50亿年前,宇宙所有的物质都高度密集在一点,有着极高的温度,因而发生了巨大的爆炸。大爆炸以后,物质开始向外大膨胀,就形成了今天我们看到的宇宙。大爆炸的整个过程是复杂的,现在只能从理论研究的基础上描绘过去远古的宇宙发展史。在这150亿年中先后诞生了星系团、星系、我们的银河系、恒星、太阳系、行星、卫星等。现在我们看见的和看不见的一切天体和宇宙物质,形成了当今的宇宙形态,人类就是在这一宇宙演变中诞生的。

      人们是怎样能推测出曾经可能有过宇宙大爆炸呢?这就要依赖天文学的观测和研究。我们的太阳只是银河系中的一两千亿个恒星中的一个。像我们银河系同类的恒星系——河外星系还有千千万万。从观测中发现了那些遥远的星系都在远离我们而去,离我们越远的星系,飞奔的速度越快,因而形成了膨胀的宇宙。

      对此,人们开始反思,如果把这些向四面八方远离中的星系运动倒过来看,它们可能当初是从同一源头发射出去的,是不是在宇宙之初发生过一次难以想像的宇宙大爆炸呢?后来又观测到了充满宇宙的微波背景辐射,就是说大约在150亿年前宇宙大爆炸所产生的余波虽然是微弱的但确实存在。这一发现对宇宙大爆炸是个有力的支持

      根据大爆炸理论,宇宙是由一个致密致热的奇点膨胀到现在的状态的。大爆炸理论是宇宙物理学(physical cosmology)关于宇宙起源的理论。根据大爆炸理论,宇宙是在大约140亿年前由一个密度极大且温度极高的状态演变而来的。本理论产生于观测到的哈勃定律下星系远离的速度,同时根据广义相对论的弗里德曼模型(Friedmann model),宇宙空间可能膨胀。延伸(Extrapolate)(数学上同插值(intepolation)相反)到过去,这些观测结果显示宇宙是从一个起始状态膨胀而来。在这个起始状态中,宇宙的物质和能量的温度和密度极高。至于在此之前发生了什么,广义相对论认为有一个引力奇点(gravitational singularity),但物理学家对此意见并不统一。

      大爆炸一词在狭义上是指宇宙形成最初一段时间所经历的剧烈变化,这段时间通过计算大概在距今137亿(1.37 × 1010)年前;但在广义上指当今流行的揭示宇宙起源和膨胀的理论。这一理论的直接推论是我们今天所处的宇宙同昨天或者明天的宇宙不同。根据这一理论,乔治·盖莫夫(George Gamow)在1948年预测了宇宙微波背景辐射的存在。1960年代,这一辐射被探测到,有力地支持了大爆炸理论,从而否定了另一个比较流行的稳恒态宇宙理论(steady state theory)。

      大爆炸理论是通过实验观测和理论推导发展的,在实验观测方面,1910年代,维斯特·斯里弗尔(Vesto Slipher)和卡尔·韦海姆·怀兹(Carl Wilhelm Wirtz)证实了大多数旋涡星云正在退离地球,不过他们并没有因此联想到这对宇宙学意味着什么,也不认为发现的星云其实是银河系外的其他星系。同时在理论上,爱因斯坦的广义相对论成功建立并推出没有稳定态宇宙。通过度量张量(metric tensor)描述的宇宙不是膨胀就是收缩,爱因斯坦认为他自己解错了,并加入了一个宇宙学常数(cosmological constant)来进行改正。第一个不使用宇宙学常数,而真正认真将广义相对论运用到宇宙学中的是亚历山大·弗里德曼(Alexander Friedmann),他的方程所描述的宇宙称为Friedmann-Lematre-Robertson-Walker宇宙,时间是1922年。1927年,比利时天主教牧师Georges Lematre独立推导出Friedmann-Lematre-Robertson-Walker方程,并在螺旋星云后退现象的基础上提出了宇宙是从一个“初级原子”“爆炸”而来的—这就是后来所谓的大爆炸。

      1929年,爱德文·哈勃为Lematre的理论提供了实验条件。哈勃证明这些旋涡星云其实是星系,并通过观测仙王座δ(Cepheid variable)的星体测算出了他们之间的距离。他发现,星系远离地球的速度同它们与地球之间的距离刚好成正比,这就是所谓哈勃定律。根据宇宙学的原理,当观测足够大的空间时,没有特殊方向和特殊点,因此哈勃定律说明宇宙在膨胀。这一观点存在两种互相对立的可能性:一种是由Lematre提出,乔治·盖莫夫(George Gamow)支持和完善的大爆炸理论;另一种则是霍伊尔(Fred Hoyle)的稳恒态宇宙模型(steady state model)。在稳恒态宇宙模型里,新物质在星系远离留下的空间中不断产生,从而宇宙基本不变化。其实这个理论的提出是出于讽刺Lematre的大爆炸理论的,最开始是在1949年通过BBC广播节目形式传播的,论文《物质的自然》(The Nature of Things)发表于1950年。

      之后的许多年,这两种理论并立,但观测事实开始支持一个演变子热密状态的宇宙。1965年宇宙微波背景辐射的发现使人们认为大爆炸理论是宇宙起源和演变最好的理论。1970年以前,很多宇宙学家认为宇宙可能在膨胀以前先收缩,这样可以避免从弗里德曼模型推出一个无限致密的“荒谬”的奇点。比较有代表性的是Richard Tolman的脉动宇宙模型(oscillating universe)。1960年代末,史蒂芬·霍金等人证明这个假设行不通,因为奇异点是爱因斯坦引力理论的直接和重要推论。之后大多数宇宙物理学家开始接受广义相对论所描述的宇宙在时间上是有限的。但是,由于对于量子引力规律缺乏认识,现在还不能断定这个奇异点到底是真正集合意义上的无限小点,还是物理收缩过程可以无限进行下去,从而间接达到宇宙在时间上无限。

      现在宇宙物理学的几乎所有研究都与宇宙大爆炸理论有关,或者是它的延伸,或者是进一步解释,例如大爆炸理论下星系如何产生,大爆炸时发生的物理过程,以及用大爆炸理论解释新观测结果等。90年代后期和二十一世纪初,由于望远镜技术的发展和人造探测器收集到大量数据,大爆炸理论又有了新的巨大突破。大爆炸时期宇宙的情况和数据可以计算得更加精确,并产生了很多意想不到的结果,比如宇宙的膨胀在加速。(参看:暗能量(dark energy)。)

      大爆炸理论测算出宇宙的年龄是137±2亿年,这一计算是通过对Ia型超新星的观测,对宇宙背景辐射强度的测量,以及对星系相关函数(correlation function)的测量得出的。这三个独立测算所得到的结果一致,从而被认为是所谓更详细描述宇宙中星系性质的Lambda-CDM model的强有力证据。早期的宇宙充满了同源同性的物质,其温度压强能量都极高。随着膨胀和冷却,宇宙物质经历了相变,这种相变与蒸气冷却时的凝结过程和水的凝固过程相似,不同之处在于前者发生在更基本的粒子层面上。

      普朗克时期(Planck epoch)之后大约10 35秒,相转变引起宇宙产生指数级增长,称为暴胀(cosmic inflation)。之后暴胀停止,此时宇宙的物质形式是夸克-胶子等离子体(quark-gluon plasma)(同时也具有其他粒子,例如可能含有最近实验发现的夸克-胶子液体(quark-gluon liquid)),这些物质的运动都符合相对论。宇宙继续在空间上膨胀,温度继续下降。在某一温度下,一种至今未知的所谓重子相变(baryogenesis)的相变产生,夸克和胶子组成重子,就是质子和中子,同时还在物质和反物质之间产生了不对称性,这种不对称性已经被实验证实。随着温度进一步降低,更多无对称的相变发生,形成了现在的基本粒子和基本相互作用。之后,一些质子和中子结合,组成氘和氦的原子核,这个过程叫做大爆炸核合成(Big Bang nucleosynthesis)。随着宇宙的冷却,物质不再依照相对论理论运动,而静止质量的能量密度以引力形式存在,刘伯温烧饼歌!并超过辐射形式的能量密度。在大约30万年之后,电子和原子核结合成为原子(主要是氢原子),而物质通过脱耦(decouple)发出辐射并在宇宙空间中相对自由的传播,这就是今天德宇宙微波背景辐射。

      随着时间的前进,在几乎是均匀分布的物质空间中,密度稍微大一点儿的区域通过引力作用吸引附近的物质,从而变得密度更大,并形成今天的气体云(gas cloud)、恒星、星系和其他天文学观测到的结构。具体过程决定于宇宙物质的形式和数量,其中形式可能有三种:冷暗物质、热暗物质和重子物质(baryonic matter)。

      宇宙大爆炸理论在其发展的过程中产生了一些疑点和问题,其中有些随着观测和理论的不断完善得到了解决,而成为了历史,但也有一些问题至今没有圆满解决,诸如环形尖点问题(Cuspy halo problem)、冷暗物质的矮星系问题(dwarf galaxy problem)等。有些人认为这些问题并不是大爆炸理论的致命问题,通过大爆炸理论的进一步发展可以得到解决。

      在发现暗能量之前,宇宙学家认为宇宙有两种未来。如果宇宙物质密度(density)超过临界密度(critical density),宇宙会在膨胀到最大体积之后收缩,在收缩过程中,宇宙的密度和温度都会再次升高,最后终结于同爆炸开始相似的状态——一个致密致热的小球。或者如果宇宙物质密度等于或者小于临界密度,膨胀会逐渐减速,但永远不会停止。造星运动会随宇宙密度减小而逐渐停止,而宇宙的温度会趋近于绝对零度。黑洞被气化,宇宙的熵会增加到极点,再也不会有有组织的能量形式产生,这叫做热寂说(heat death)。如果质子衰变(proton decay)存在,宇宙最后甚至连氢原子这种最基本最多的重子物质都会消失,而只剩下辐射。

      但现在在发现加速膨胀宇宙(accelerated expansion )之后,人们有了新的推测:现今可观测的宇宙将离开我们的视野(event horizon)而同我们失去联系,最终结果还不清楚。Lambda-CDM model宇宙模型认为宇宙的暗能量以宇宙常数形式存在,并提出只有诸如星系等重力支配系统的物质会聚集,从而同样推出宇宙膨胀和冷却到最后将是热寂说。对暗能量的其他解释,例如幻影能量理论(phantom energy)则认为星系群甚至星系都会在大分离过程中被“撕”开。

      哲学上,有一些对大爆炸理论诠释完全主观和超越科学。一些诠释企图解释大爆炸的原因(第一因),被自然主义的哲学家批评为现代的世界起源神话。一些人相信大爆炸理论支持传统的世界起源观点,譬如在创世记所载的,另一些人认为所有大爆炸理论都与传统观点不合。

      大爆炸理论本身是纯粹的科学理论,不与宗教关连。一些基本教义派的诠释与大爆炸理论所描述的宇宙历史不相符合,但较接近于自由派的诠释则没有冲突。

      道教的《道德经》中有“道生一,一生二,二生三,三生万物。万物负阴而抱阳,冲气以为和”(42章)的语句。这可以解释为“道”即宇宙,开始于“一”个奇异点,之后生出正反物质(“二”),从而产生了构成万物的质子、电子和中子。 万物都是由于正反粒子相互作用而通过大爆炸的形式产生的。

      佛教中宇宙的概念没有起始点。但是大爆炸理论并不与其观念相矛盾,因为在大爆炸理论基础上可以假设一个永恒的宇宙,例如不少禅宗哲学家对脉动宇宙(oscillating universe)特别感兴趣。

      一些基督教教会,包括罗马天主教教会(Roman Catholic Church)已经接受大爆炸理论,把它作为哲学上宇宙起源的一种描述。庇护十二世教皇(Pope Pius XII)对推广大爆炸理论很热心,尽管当时的理论并不完善。

      展开全部宇宙是如何起源的?自古以来一直是人类最感兴趣和不懈探索的问题.历史上曾经出现过各种各样的神话传说,但宇宙的起源本身却是一个科学问题.20世纪以来,由于科学技术的发展,人们在对宇宙观测中取得了越来越多的重大发现,从而逐渐建立起科学的宇宙模型枣大爆炸宇宙学模型.

      20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离人们而去.1929年哈勃把这种退行红移的测量与星系的距离的测量结合起来,总结出了著名的哈勃定律:星系的退行速度v与它的距离r成正比,即v=Hr.

      根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,物质密度一直在变稀.由此反推,宇宙的结构在某一时刻前是不存在的,它只能是演化的产物.因而1948年伽莫夫等人首先提出了大爆炸宇宙学模型.

      1948年,伽莫夫等在美国《物理评论》杂志上发表了关于大爆炸宇宙学模型的文章:提出宇宙是由甚早期温度极高且密度极大,体积极小的物质迅速膨胀形成的,这是一个由热到冷、由密到稀,不断膨胀的过程,尤如一次规模极其巨大的超级大爆炸.

      根据这一学说,在宇宙的最早期,即距今大约150亿年前,今天所观测到的全部物质世界统统都集中在一个很小的范围内,温度极高,密度极大.大爆炸开始后0.01秒,宇宙的温度约为1000亿摄氏度,其物质的主要成分为轻粒子(如光子、电子或中微子),而质子和中子只占十亿分之一.所有这些粒子都处于热平衡状态.由于整个体系在快速膨胀,因此温度很快下降.大爆炸后0.1秒,温度下降到300亿摄氏度,中子与质子之比从原来的1下降到0.61.1秒钟后,温度已下降到100亿摄氏度.随着密度的减小,中微子不再处于热平衡状态,开始向外逃逸.电子枣正电子对开始发生湮没反应,中子与质子之比进一步下降到0.3.但这时温度还太高,核子仍不足以把中子和质子束缚在一起.大爆炸后13.8秒,宇宙温度下降到30亿摄氏度.这时质子和中子已可形成像氘、氦那样稳定的原子核.化学元素从这时候开始形成.35分钟后,宇宙温度进一步下降到3亿摄氏度,核形成停止了.氦和自由质子的质量之比大致保持在0.22~0.28这一范围内.由于温度还很高,质子仍不能和电子结合起来形成中性原子.中性原子大约是在大爆炸发生后30万年才开始形成的,这时 的温度已降到3 000摄氏度,化学结合作用已足以将绝大部分自由电子束缚在中性原子中.到这一阶段,宇宙的主要成份是气态物质,随着温度的进一步降低,它们慢慢地凝聚成密度较高的气体云,到109年后,进一步形成各种星系,1010年形成恒星系统.这些恒星系统又经历了漫长的演化,才形成了我们今天所看到的宇宙.

      宇宙早期的温度极高,今天的温度已降到极低(绝对温度3K).如此巨大的温度跨度是任何实验室条件都无法办到的.但是人们可以把已有的关于粒子物理、核物理、等离子体物理以及其他的物理知识应用于不同的宇宙演化阶段来预言各种宇宙学效应 .例如,大爆炸核合成及微波背景辐射等.通过多年的天文观测,这些预言已逐渐被证实,从而成为大爆炸宇宙模型的有力证据.

      这是大爆炸宇宙模型的基础,对宇宙大尺度结构的观测结果已经证实宇宙学原理的正确性.即宇宙在大尺度上一定是均匀各向同性,1989年发射的COBE卫星对微波背景辐射的精密测量进一步表明在10-4精度内宇宙是各向均匀、同性的.

      从哈勃定律得到启示建立的大爆炸宇宙模型反过来可以预言这种定律.它已被28000个星系的红移(或退行速度)与距离的关系的观测数据所证实.

      宇宙既然是在一次大爆炸中诞生,那就可以谈论它的年龄.大爆炸宇宙学预言宇宙今天的年龄约为150亿年,宇宙中的结构,例如恒星、星系等,都是在宇宙形成以后逐渐形成的,所以它们的年龄必须小于宇宙年龄.近年来,人们通过采用多种不同的方式来测定星系和恒星的年龄,例如测量放射性元素及其衰变产物在星体中的丰度等,最后得到的结果是完全一致的.即星系和恒星的年龄,都在几十亿年的数量级,这与宇宙的年龄是相容的.

      大爆炸宇宙学认为最初的宇宙中,既没有分子,也没有原子.第一批原子核是在大爆炸后10-2秒到3分钟这一时间内,由质子和中子组合而成并遗留至今的 .因而预言了宇宙中轻元素的丰度(如氦的丰度约为25%,氢的丰度约为75%).多年来人们对天体范围内的轻元素丰度的观测结果,正好与大爆炸的预言相一致.从而成为大爆炸宇宙学的最早证据.

      大爆炸宇宙学模型认为温度降低到3000K左右时,中性原子将大量形成,光子与他们失去耦合,从而作为宇宙中的一个独立组分存留下来.伽莫夫预言,这种作为历史遗迹的背景光子应当可以在今天观测到,并估计出大约温度为10K .

      1964年就在物理学家们计划用辐射计观测这种背景辐射的时候,美国贝尔电话实验室的两位工程师,彭齐亚斯和威尔逊在安装调试卫星天线的过程中,发现天空各个不同方向上都存在一种不变的相当于3.5K的黑体辐射背景(即微波背景辐射).他们因此获得了1978年的诺贝尔物理学奖.后来,1989年发射的COBE(宇宙背景探测者)卫星则最终测定出在10-4精度内宇宙背景辐射是各向同性的,且测得背景光子的温度为2.7K,于是从理论上预言的,在4×105年时留下的遗迹终于被实测充分证实了,这也成为大爆炸宇宙学的最强有力的证据.

      大爆炸宇宙学模型发展至今,特别是关于轻元素丰度的解释和微波背景辐射的测量,说明大爆炸宇宙学模型正在走向成熟.但这并不能说明该理论无可挑剔.相反,大爆炸理论存在诸多包括视界问题、平坦性问题(现已被暴涨理论所解释)、奇性问题、磁单极子问题、重子 不对称问题、暗物质问题和宇宙常数等困难,这些有待于进一步研究.相信对这些问题的不断解决,必将进一步完善大爆炸宇宙学模型.

      展开全部宇宙大爆炸(Big Bang)仅仅是一种学说,是根据天文观测研究后得到的一种设想。 大约在150亿年前,宇宙所有的物质都高度密集在一点,有着极高的温度,因而发生了巨大的爆炸。大爆炸以后,物质开始向外大膨胀,就形成了今天我们看到的宇宙。大爆炸的整个过程是复杂的,现在只能从理论研究的基础上,描绘过去远古的宇宙发展史。马经历史平特258图库,在这150亿年中先后诞生了星系团、星系、我们的银河系、恒星、太阳系、行星、卫星等。现在我们看见的和看不见的一切天体和宇宙物质,形成了当今的宇宙形态,人类就是在这一宇宙演变中诞生的。

      科学家认为它起源为137亿年前之间的一次难以置信的大爆炸。这是一次不可想像的能量大爆炸,宇宙边缘的光到达地球要花120亿年到150亿年的时间。大爆炸散发的物质在太空中漂游,由许多恒星组成的巨大的星系就是由这些物质构成的,我们的太阳就是这无数恒星中的一颗。原本人们想象宇宙会因引力而不在膨胀,但是,科学家已发现宇宙中有一种 “暗能量”会产生一种斥力而加速宇宙的膨胀。

      大爆炸后的膨胀过程是一种引力和斥力之争,爆炸产生的动力是一种斥力,它使宇宙中的天体不断远离;天体间又存在万有引力,它会阻止天体远离,甚至力图使其互相靠近。引力的大小与天体的质量有关,因而大爆炸后宇宙的最终归宿是不断膨胀,还是最终会停止膨胀并反过来收缩变小,这完全取决于宇宙中物质密度的大小。

      理论上存在某种临界密度。如果宇宙中物质的平均密度小于临界密度,宇宙就会一直膨胀下去,称为开宇宙;要是物质的平均密度大于临界密度,膨胀过程迟早会停下来,并随之出现收缩,称为闭宇宙。

      问题似乎变得很简单,但实则不然。理论计算得出的临界密度为5×10^-30克/厘米3。但要测定宇宙中物质平均密度就不那么容易了。星系间存在广袤的星系间空间,如果把目前所观测到的全部发光物质的质量平摊到整个宇宙空间,那么,平均密度就只有2×10^-31克/厘米3,远远低于上述临界密度。

      然而,种种证据表明,宇宙中还存在着尚未观测到的所谓的暗物质,其数量可能远超过可见物质,这给平均密度的测定带来了很大的不确定因素。因此,宇宙的平均密度是否真的小于临界密度仍是一个有争议的问题。不过,就目前来看,开宇宙的可能性大一些。

      恒星演化到晚期,会把一部分物质(气体)抛入星际空间,而这些气体又可用来形成下一代恒星。这一过程会使气体越耗越少,以致最后再没有新的恒星可以形成。10^14年后,所有恒星都会失去光辉,宇宙也就变暗。同时,恒星还会因相互作用不断从星系逸出,星系则因损失能量而收缩,结果使中心部分生成黑洞,并通过吞食经过其附近的恒星而长大。

      10^17~10^18年后,对于一个星系来说只剩下黑洞和一些零星分布的死亡了的恒星,这时,组成恒星的质子不再稳定。10^32年后,质子开始衰变为光子和各种轻子。10^71年后,这个衰变过程进行完毕,宇宙中只剩下光子、轻子和一些巨大的黑洞。

      10^108年后,通过蒸发作用,有能量的粒子会从巨大的黑洞中逃逸出。宇宙将归于一片黑暗。这也许就是开宇宙“末日”到来时的景象,但它仍然在不断地、缓慢地膨胀着。

      闭宇宙的结局又会怎样呢?闭宇宙中,膨胀过程结束时间的早晚取决于宇宙平均密度的大小。如果假设平均密度是临界密度的2倍,那么根据一种简单的理论模型,经过400~500亿年后,当宇宙半径扩大到目前的2倍左右时,引力开始占上风,膨胀即告停止,而接下来宇宙便开始收缩。

      以后的情况差不多就像一部宇宙影片放映结束后再倒放一样,大爆炸后宇宙中所发生的一切重大变化将会反演。收缩几百亿年后,宇宙的平均密度又大致回到目前的状态,不过,原来星系远离地球的退行运动将代之以向地球接近的运动。再过几十亿年,宇宙背景辐射会上升到400开,并继续上升,于是,宇宙变得非常炽热而又稠密,收缩也越来越快。 在坍缩过程中,星系会彼此并合,恒星间碰撞频繁。

    Power by DedeCms